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Time-evolution operator and propagator for quadratic 
Hamiltonians 
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Instituto de lnvestigaciones Fisicoquimicas Tedricas y Aplicadas (INIFTA), Division 
Quimica Teorica, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina 

Received 15 J u l y  1987, in final form 7 October 1987 

Abstract. The time-evolution operator and the propagator for a general one-dimensional 
quadratic Hamiltonian are obtained. The method is based on the equations o f  motion for 
the coordinate and momentum in the Heisenberg representation and the problem is reduced 
to solving the classical equations of motion. 

1. Introduction 

The harmonic oscillator with linear and bilinear terms in coordinates and momenta 
proves to be a useful model for a number of physical phenomena (Gazdy and Micha 
1985, Braum 1985, Um et  a1 1987 and references therein). The exact form of the 
time-evolution operator and propagator for the one-dimensional case has already been 
obtained (Pechukas and Light 1966, Gazdy and Micha 1985, Fernhndez and Castro 
1987a, Landovitz er a1 1983, Um er a1 1987). Although the time-evolution operator 
for the general multidimensional quadratic Hamiltonian has also been obtained (Fer- 
nhndez and Castro 1987b) the calculation of physical properties does not appear to 
be an easy task. 

The purpose of this paper is to present an alternative method that yields both the 
time-evolution operator and propagator simultaneously. Because of its simplicity, the 
procedure may in principle be generalised to handle more than one degree of freedom. 

2. Equations of motion 

A general one-dimensional quadratic Hamiltonian can be written (units are chosen so 
that h = 1) 

where f ; (  t ) ,  j = 1,2, . . . , 5, are real continuous functions of time, x, = i q 2 ,  x2 = 
i( q p  + p q ) ,  x3 = f p 2 ,  x4 = q, x5 = p and p = -id/dq. The time-evolution operator U (  1, t o )  
is a solution of the Schrodinger equation d U / d t  = - iHU with the initial condition 
U (  t o ,  t o )  = Z, where Z is the identity operator. Both the time-evolution operator and 
the propagator K ( q ,  t ;  qo ,  to)  can be simultaneously determined because they are 
related by (Pechukas and Light 1966) K ( q ,  1;  qo, t o )  = U ( ? ,  t o ) S ( q  -qo )  where 6 is the 
Dirac delta function. 
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The present method is based on the equations of motion for the coordinate and 
momentum operators in the Heisenberg representation, q, = U'qU and p f  = U'pU, 
respectively, that obey d o ,  = i U ' ( H 0  - O H )  U, where 0 = q, p .  Therefore, they can 
be written (Fernindez and Castro 1987a, b)  q, = Q O ( t ) +  Q l ( t ) q +  Q,(r)p and pf = 
Po( t )  + PI( t ) q  + Pz( t ) p ,  where the functions Q, and P, are solutions of the classical 
equations of motion 

with the initial conditions Qo = Po = Q2 = PI = 0 and Q1 = Pi = 1 at  t = to.  Since qfpf - 
p lqr  = i we have QIPz - Q2Pl = 1 for all t values. 

It is worth noticing that it is not necessary to know the form of the wavefunction 
in order to calculate matrix elements or expectation values at t = t (Um er a1 1987) 
since they are simply obtained from their values at t = to.  In other words, the dynamics 
of the quantum mechanical system is determined by the classical equations of motion. 
In fact, if W ( p ,  q, 1 )  satisfy W, = W ( p , ,  q,, t ) ,  then ($,,(t)I W & , ( t ) ) =  
(4"(fO)lW(Pl,  41. t ) + l , ( t o ) ) .  

3. The time-evolution operator and propagator 

Since the operators xI ( j  = 1,2, . . . , 5 )  and x6 = I span a six-dimensional Lie algebra 
the time-evolution operator can be written (Wei and Norman 1963) 

6 

u = n  U, U, = exp{ia,(r)x,} 
, = I  

(3) 

where a,( t ) ,  j = 1,2,  . . . , 6 ,  are real functions of time that vanish at t = to.  The trivial 
phase factor exp(ia6) is disregarded from now on. 

It seems to be necessary to distinguish two levels of 'solvability'. First, whenever 
H can be written as a linear combination of operators spanning a finite-dimensional 
Lie algebra, the form of U is exactly known (Wei and  Norman 1963) (equation (3) 
is merely an example). However, the analytical dependence of U on t can only be 
determined provided certain differential equations, such as the classical equations of 
motion (2) or  those discussed by Wei and  Norman (1963), are solved by quadrature. 
Some particular cases are discussed by Landovitz er a1 (1979) and Um et a1 (1987). 

In order to obtain the propagator one can use the representation 

where uk = exp[ik(q -qo ) ] .  Since uk is an eigenfunction of p with eigenvalue k it 
follows immediately that 

Uk = uuk =b:'* e ~ p { i [ k ( b , q - q , + a 5 ) + a , b , q + f a , ( k + a , ) ~ + ~ a , q ' ] )  ( 5 )  

where bi = exp(a,). Besides, uA satisfies 

U'PVk = P r U k  ( 6 a )  

a a 
- Uh i(q - q o ) U k  = U +  - U k  = i[ b2qf - qo+ a 5  + U,( k + ~ 4 ) ] u k .  ( 6 b )  a k  ak 
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A straightforward algebraic manipulation of these last equations yields 

( 7 )  
ai = Pi/ Q i  

a4= QiPo- QoPi 

a, = -In Q1 a3 = - 9 2 1  Qi  

a5 = Q 2 p o -  Qop,. 

Clearly, the functions a., (except a6),  and thereby U, are obtained from the classical 
equations of motion. 

Finally, the propagator is given by 

which, except for a phase factor, leads to 

in agreement with the result obtained by Landovitz et a1 (1983). The main advantage 
of the present procedure is, in addition to its simplicity, that it yields both U and K 
simultaneously and avoids the tiresome calculation of commutators characteristic of 
the algebraic methods. The general multidimensional problem will be investigated in 
a forthcoming paper. 

Note added in proof: The time-evolution operator and propagator for the general multidimensional model 
was obtained some time ago by M Kolsrud (1956 Phys. Rev. 104 1186). I am most grateful to Professor 
S T Epstein (University of Wisconsin-Madison) for having called my attention to this paper. 
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